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Abstract— Tool wear detection is critical in Computer Numeric Control (CNC) milling to maintain machining precision, reduce
material waste, and extend tool life. Traditional methods, including manual inspection and basic sensor-based approaches, are often
inefficient and prone to error, underscoring the need for automated, real-time solutions. This study investigates the effectiveness of deep
learning (DL) models incorporating attention mechanisms for tool wear classification. Four architectures—CNN with attention, LSTM
with attention, Hybrid CNN-LSTM with attention, and Transformer encoder—are evaluated on a benchmark machining dataset. Among
the models tested, the Hybrid CNN-LSTM with attention achieves the highest accuracy of 99.85%, effectively capturing both spatial and
temporal dependencies in the data. The LSTM with attention model follows with 99.69% accuracy, excelling in modeling sequential
patterns. CNN with attention also performs well with 99.15% accuracy. In contrast, the Transformer encoder achieves comparatively
lower accuracy at 89.3%, suggesting a need for further optimization for this specific application. The results highlight the strong
potential of attention-based DL models in enhancing tool wear detection in smart manufacturing environments. Specifically, the Hybrid
CNN-LSTM with attention model demonstrates suitability for real-time monitoring and predictive maintenance. This research
contributes to the development of robust, automated systems for tool condition monitoring and lays the groundwork for future
improvements in intelligent manufacturing technologies.

Keywords: CNC Milling, Deep Learning, Attention Mechanism, Tool Wear Detection.

I. INTRODUCTION

In modern manufacturing, CNC (Computer Numerical
Control) milling is a crucial machining process in modern
manufacturing, producing high-precision components across
industries such as aerospace, automotive, and medical
devices [1,2]. Fig. 1 shows a CNC milling machine in
operation, showcasing the control panel, cutting area, and
tooling setup used for precision machining in manufacturing
industries. However, the efficiency of CNC milling is highly
dependent on the condition of the cutting tools, which
experience gradual wear due to mechanical stress, high
temperatures, and friction with workpiece materials [3, 4].
Tool wear leads to reduced machining accuracy, increased Traditionally, tool wear detection has relied on direct and
cutting forces, poor surface finish, and even catastrophic tool  indirect monitoring techniques [9]. Direct methods, such as
failure if not monitored and managed properly [5]. This has  optical microscopy and scanning electron microscopy
driven the need for effective tool wear detection systems that ~ (SEM), provide highly accurate measurements but require
enable real-time monitoring and predictive maintenance, machine stop pages, making them impractical for real-time
reducing downtime and improving production efficiency [6—  applications [10]. Indirect methods utilize sensor data,
8]. including vibrations, acoustic emissions, cutting forces, and

spindle power, to infer tool wear conditions [11]. While these
methods enable real time monitoring, they often require
complex feature extraction and signal processing techniques
to ensure accuracy [12]. In recent years, Machine learning
(ML) and Deep Learning (DL) approaches have
revolutionized tool wear detection by automating feature
extraction and improving predictive capabilities [13,14].

Fig. 1: CNC milling machine at DTU
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Reliable tool wear detection is crucial for improving
manufacturing efficiency and minimizing downtime.
Traditional machine learning approaches rely heavily on
manual feature extraction, which is time-consuming and
lacks the adaptability to different machining conditions.
Deep learning (DL) eliminates this limitation by
automatically learning patterns from raw sensor data, making
it more effective in handling complex, high-dimensional
information [15].

Unlike ML models that require predefined indicators, DL
architectures such as CNNs and LSTMs can extract hidden
patterns from machining data without human intervention.
Attention mechanisms further enhance DL models by
dynamically focusing on the most relevant features,
improving accuracy and robustness [16]. This adaptability
makes DL a superior choice for real-time tool wear detection
in CNC milling, where machining conditions frequently vary
[17].

Furthermore, integrating attention-based models aligns
with the goals of Industry 4.0, enabling smart manufacturing
with predictive maintenance and real-time decision making.
By leveraging advanced DL techniques, manufacturers can

enhance productivity, reduce tool replacement costs, and
optimize machining performance, making tool wear
detection more efficient and scalable [18].

This paper is structured into six sections. Section 1
provides an overview of tool wear detection in CNC milling
and the motivation for using attention-based DL models.
Section 2 shows the literature review that reviews existing
approaches, of DL techniques and presents the research gaps.
Section 3 shows the problem statement and research
objectives. Section 4 illustrates the technical background that
covers DL architectures, attention mechanisms, dataset
preparation, model implementation and evaluation metrices.
Section 5 presents the experimental setup and comparative
analysis of the models. Finally, Chapter 6 summarizes key
findings, contributions to smart manufacturing, and
directions for future research.

Il. LITERATURE REVIEW

DL -based approaches for tool wear detection have gained
significant attention, with various models being explored to
improve prediction accuracy and monitoring efficiency [19].

Table 1: Related work on DL-based tool wear detection

Reference Model Results (%) Research Focusses Comments
Kumar et al. EfficientNet-B0 94.11 Vision-based tool wear Self-attention or hybrid
[20] (2025) (Pre-trained CNN) ' monitoring with CNN. architectures not explored.
. Hybrid CNN, BiLSTM
Xu etal. [21] Multi-scale CNN N ' - . .
(2025) BILSTM-GCN 98.50 GCN for spatial-temporal | No explicit attention mechanisms.
features.
He et al. [22] Semi-Supervised 95.78 Semi-supervised LSTM No attention for global dependency
(2025) LSTM ' for tool wear detection. learning.
Karabacak et | CNN(GoogleNet, .
al. [23] AlexNet, ResNet-50, 99.00 (]Ec')\:l?o\;vl'wes;eg;gg{%?s No sequential feature learning.
(2023) EfficientNet-B0) '
Compared DL (CNN, CNN best overall; AE-LSTM
Tzaﬂ?ggtzgl)' CNRL kA EI\II_ ST™, 93.00 AE-LSTM) and traditional reduced false positives; k-NN
k-NN on sensor data. struggled with noise.
Wu et al CNN(ToolWearNet) Image-based tool wear
[25] (2015) with CAE and 96.20 detection using CNN and | Lacks transformer-based learning.
BP-SGD CAE.
Tobon-Mejia | MoG-HMM with DBN-based tool wear and Strong RUL prediction; future
et al. [26] Dynamic Bayesian 89.5 RUL prediction using work to address variable conditions
(2012) Networks (DBN) sensor features. and maintenance integration.

Table 1 summarizes key research contributions in this
domain. Kumar et al. [20] implemented a vision-based tool
wear monitoring system using EfficientNet-BO with transfer
learning, achieving 94.11% accuracy, but their study did not
explore self-attention or hybrid architectures. Xu et al. [21]
introduced a multi-scale CNN-BiLSTM-GCN model, which
enhanced spatial-temporal feature extraction and achieved
98.50% accuracy; however, their approach lacked explicit

attention mechanisms, such as Transformers, for feature
refinement. He et al. [22] developed a semi-supervised
LSTM-based tool wear identification model, leveraging both
labeled and unlabeled data to improve accuracy (95.78%),
but it did not incorporate attention-based enhancements for
global dependency learning. Karabacak et al. [23] utilized
CNN  models (GoogleNet, AlexNet, ResNet-50,
EfficientNet-B0) for tool wear detection with spectrogram
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analysis, achieving 99% accuracy; however, the study did not
focus on sequential feature learning. Kamat et al. [24]
compared deep learning models (CNN, AE-LSTM) and a
traditional k-NN classifier on sensor data for tool wear
classification. The CNN model achieved the highest accuracy
of 93.0%, with AE-LSTM showing better false positive
reduction, while k-NN struggled with noisy and
high-dimensional data. Wu et al. [25] proposed CNN
(ToolWearNet) with a convolutional autoencoder (CAE) and
backpropagation-based fine-tuning, achieving 96.20%
accuracy, but their approach did not explore
Transformer-based architectures for enhanced learning.
Similarly, Tobon-Mejia et al. [26] developed a diagnostic and
prognostic model using MoG-HMM combined with
Dynamic Bayesian Networks (DBN) to estimate tool wear
and predict Remaining Useful Life (RUL) based on sensor
features, achieving an accuracy of 89.5%. Their approach
showed strong RUL prediction performance but lacked
adaptability to varying operating conditions and maintenance
integration.

A. Research Gaps

1. Most existing studies rely on CNN, LSTM, or hybrid
models, but they do not incorporate attention-based
architectures  like Transformers or self-attention
mechanisms, which can refine feature extraction and
improve predictive performance.
While CNN-based models effectively capture spatial
features, they struggle with learning sequential
dependencies in tool wear progression. Some hybrid
models, such as those combining CNN and BiLSTM,
enhance temporal feature extraction, but they lack explicit
attention-based components to improve global context
understanding.

. Additionally, there has been no comprehensive
comparison of different attention-based models to
evaluate their effectiveness in tool wear detection.
Hence, this study aims to address these limitations by

conducting a comparative analysis of multiple
attention-based DL models for tool wear detection. By
evaluating the performance of Transformer architectures and
self-attention mechanisms against traditional CNN, LSTM,
and hybrid approaches, this study seeks to determine the
optimal model for spatial-temporal feature extraction and
real-time tool wear monitoring.

I1l. RESEARCH METHODOLOGY

This section outlines the systematic approach followed to
conduct the research. The study uses an open-source dataset
to perform tool wear detection using four attention based LD
models. The methodology comprises several stages, starting
with data preprocessing, followed by model selection and
training. The performance of each model is evaluated using
various key metrics. Finally, a comparative analysis is
conducted to identify the most effective model. Fig. 2

illustrates the entire workflow.

Problem ldentification

Identify Gaps
1

Literature Review

Acauire Data & Clean
1

Data Preprocessing

Extract Features & Select Data
L

Model Selection (4 Attention-Based Models)

Train Models & Evaluate
L

Model Training, Eval

uation & Comparison

Mnalyze Results
L

Discussion and Conclusion

Document Findings

Report Writing |

Fig 2: Research Methodology Flowchart

A. Dataset Description

The dataset originates from the University of Michigan
SMART Lab and is designed for tool wear detection in CNC
milling machining experiments. This dataset can be accessed
at https://www.kaggle.com/datasets/shasun/tool-wear-detecti
on in-cnc-mill. It was obtained from the Kaggle repository.
The dataset includes multiple experiments, each focusing on
different machining conditions such as tool condition, feed
rate, and clamping pressure.

1) Tool and Material Specification

Tool Specification

Tool type: CNC Milling Cutter.

Condition: Worn and Unworn Tools (Eight experiments
with unworn tools and ten with worn tools).

Purpose: The tool was used to machine an ”S” shape into
the workpiece, representing smart manufacturing processes.

Material: The tool material, carbide or high-speed steel
(HSS) is typically used for CNC milling due to their
durability, wear resistance, and ability to maintain sharp
cutting edges under varying conditions.

Material Specification

Workpiece material: Wax
Dimensions: 2” x 2” x 1.5” (approximately 50.8 mm x 50.8
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mm x 38.1 mm).

Purpose: Wax blocks were selected as the workpiece
material to simulate realistic machining operations. They are
often used in controlled experiments because they are easy to
machine, minimize tool damage, and clearly show wear
effects on the cutting tool.

Inspection method: After the machining process, visual
inspections were performed to determine whether the
workpiece passed quality standards, aiding in tool wear
detection analysis.

This tool wear dataset serves as a valuable resource for
predictive modeling in manufacturing diagnostics. The
dataset comprises multiple CSV files, including
experiment-wise data (experiment 0l.csv to experiment
18.csv) and a consolidated dataset (main.csv). These files
contain sensor readings and machining parameters, which are
crucial for identifying worn and unworn tools. Tables 2
summarize the key features of the main.csv dataset and the
machining dataset, respectively, providing an overview of the
relevant attributes used in the analysis.

Table 2: Summary of Features in main.csv

Feature Description
Experiment Identifier for the specific machining
Number experiment.
Material Type of material used in the milling
process (e.g., wax).
Feedrate Speed at which the tool moves

during the milling operation.

Pressure applied to hold the

Clamp Pressure )
workpiece securely.

Binary label indicating whether the

Tool Condition .
tool is worn or unworn.

Machining
Finalized

Indicates if the milling process was
completed.

Denotes whether the final machined
product met quality standards.

Passed Visual
Inspection

B. Data Preprocessing

Data preprocessing is a crucial step in ML that ensures the
raw data is cleaned, structured, and transformed for optimal
model performance [27]. This process involves handling
missing values, normalizing features, and encoding
categorical variables to improve data quality and consistency
[28].

Handling Missing Values: The dataset contains missing
values in the passed visual inspection column. To ensure
consistency in the dataset, all missing values were filled with
the categorical value 'no’:

X, if X # NaN

KXiew =
mo’, if X =NaN

1)

Feature Engineering:
1. Experiment Tracking: A new column exp_num was
created to keep track of different experimental conditions.
Adding  Experiment-Specific ~ Settings:  Additional
attributes, including material, feedrate, and clamp_
pressure, were incorporated to provide contextual
information for each machining process.
Merging  Experiment ~ Results:  Labels as
tool_condition, machining_finalized, and
passed_visual_inspection were integrated into the dataset
to associate conditions with outcomes.
DataSplitting: The dataset was split into training and
testing sets using an 80:20 ratio:
Drrain, Diest = train_test_split(D, test_size = 0.2) 2
where D represents the original dataset, and Diain and Diest
are the resulting training and testing sets, respectively.
Data Normalization: To ensure numerical features have
comparable scales, StandardScaler() was applied. Each
feature X was standardized as follows:

X—u
Xcaled = T

2.

such

®)

where p is the mean and o is the standard deviation of the
feature.

Categorical Encoding: Categorical variables were
converted into  numerical  representations  using
LabelEncoder(), which assigns unique integers to each
category:

Xencoded = f(X) (4)

where f is the mapping function that assigns each category
a distinct numerical value.

C. Attention Mechanism Based DL Models for Tool
Wear Detection

To improve the accuracy of tool wear detection, different
attention-based DL models are applied and compared. The
key models used in the study are described below.

1. CNN with Attention:

This model uses self-attention to capture long-range
dependencies in sensor readings. Unlike CNN, which
captures local spatial dependencies, self-attention assigns
dynamic importance scores to all input features.

2. LSTM with Attention:

This model relies solely on LSTM for temporal modeling
and applies an attention mechanism to focus on the most
significant time steps. The attention mechanism computes an
alignment score for each hidden state in the LSTM output,
allowing the model to learn which time steps contribute most
to predicting tool wear.

3. Hybrid CNN-LSTM with Attention:

This model integrates CNNs for spatial feature extraction
with LSTM networks for temporal sequence modeling. CNN
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captures spatial de pendencies in the sensor data, while
LSTM captures the time-series relationships. An attention
mechanism is introduced to dynamically assign different
importance weights to different time steps in the sequence.

4. Transformer Encoder:

This model uses a Transformer encoder, which consists of
multi-head self attention followed by a position-wise
feedforward network.

IV. RESULTS AND DISCUSSIONS

This section presents a detailed analysis of the
performance and configuration of attention-based deep
learning models for tool wear detection. The evaluation
focuses on four models: CNN with attention, LSTM with
attention, Hybrid CNN-LSTM with attention, and
Transformer encoder, comparing their performance metrics
and hyperparameter configurations.

A. Attention-Based DL Models Comparison

Table 3 and Fig. 3 shows the comparison of various
attention-based DL models applied for the tool wear
detection. Among the models, the Hybrid CNN-LSTM with
attention exhibits the best performance, achieving an
accuracy of 99.85%, precision of 99.87%, recall of 99.83%,
and an Fl1-score of 99.85%. These results highlight the
benefits of combining CNN’s spatial feature extraction
capabilities with LSTM’s ability to capture temporal
dependencies, further enhanced by attention mechanisms.

Table 3: Comparison of attention-based DL models for tool
wear detection

Comparison of Different Models for Tool Wear Detection

entio™

i i
am wcte! o with o it o

st 8T
v ia N
'

Models

Fig. 3: Comparison of different models for tool wear
detection

The CNN with attention model achieves an accuracy of
99.15%, precision of 99.58%, recall of 98.80%, and an
F1-score of 99.19%. While the model effectively extracts
features from the input data, its lower recall suggests
occasional difficulty in identifying all relevant instances,

possibly due to limitations in capturing temporal
relationships.
In contrast, the Transformer encoder exhibits a

significantly lower performance, with an accuracy of 89.3%,
precision of 89.82%, recall of 89.86%, and an F1-score of
89.84%. This underperformance may stem from the model’s
dependency on large datasets for effective training and a
higher sensitivity to hyperparameter tuning.

B. Hyperparameter Configurations

Model Accuracy | Precision | Recall | F1-Score Table 4 details the hyperparameters used for each model,
(%) (%) (%) (%) ioh sianifi : :
which significantly influence their performance. The CNN
CNN with with attention employs ConvlD layers with 64 and 128
attention 9.15 ° 98.80 | 99.19 filters, a kernel size of 3, ReLU activation, and a dropout rate
LSTM with of 0.2. These settings enable efficient feature extraction and
attention 99.69 99.72 1 99.65 | 99.68 regularization. The LSTM with attention is configured with
Hybrid Table 4: Hyperparameters for various attention-based DL
CNN-LSTM | 99.85 99.87 | 99.83 | 99.85 models
with attention Model Hyperparameters
Transformer CNN with Conv1D filters: 64, 128 Kernel size:
encoder kg .82 89.86 89.84 attention 3 Activation: ReL U Dropout: 0.2
The LSTM with attention model also performs well, with LSTM ‘_Nith LSTM units: 64 Retur.n sequences:
an accuracy of 99.69%, precision of 99.72%, recall of attention True Dropout: 0.2
99.65%, and an F1-score of 99.68%. This model leverages Hvbrid Conv1D filters: 64, 128 LSTM
LSTM’s strengths in handling sequential data, complemented y units: 64 Multi-Head Attention
. . . CNN-LSTM . . .
by attention mechanisms to focus on the most relevant time with attention heads: 4 Key dimension: 32
steps. However, it slightly underperforms compared to the Dropout: 0.2
hybrid model. Transformer Dense layer units: 128, 64
encoder Multi-Head Attention heads: 4 Key
dimension: 32 Dropout: 0.2
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64 LSTM units, return sequences enabled, and a dropout
rate of 0.2. This setup ensures the model retains sequence
information while mitigating overfitting.

The Hybrid CNN-LSTM with attention combines the
strengths of both architectures. It uses Conv1D layers (64 and
128 filters), 64 LSTM units, and multi-head attention with 4
heads, a key dimension of 32, and a dropout rate of 0.2. This
integration optimizes both spatial and temporal feature
learning while focusing on the most critical features through
attention mechanisms.

The Transformer encoder is designed with dense layers of
128 and 64 units, multi head attention with 4 heads, a key
dimension of 32, and a dropout rate of 0.2. Despite its
sophisticated architecture, the model’s dependency on a large
dataset and intricate hyperparameter optimization affects its
effectiveness in this task.

C. Insights and Observations

The results indicate that the Hybrid CNN-LSTM with
attention is the most effective model for tool wear detection,
consistently outperforming other models across all metrics.
While the Transformer encoder shows potential, its
performance suggests that it may require further optimization
or larger datasets to fully leverage its capabilities. It is notable
that both the CNN with attention and LSTM with attention
models achieve slightly lower accuracy than the hybrid
CNN-LSTM model. Although these differences may appear
numerically small, in tasks where high accuracy is crucial
(such as tool wear detection), even a fraction of a percent can
signify a meaningful improvement. However, the results
indicate that the individual models are still highly accurate
and perform well, but not at the level of the hybrid model.

D. Performance of Proposed Model- Hybrid CNN

LSTM with Attention

The proposed hybrid CNN-LSTM with attention model
emerged as the most effective for detecting tool wear in CNC
milling operations. By combining the strengths of both CNNs
and LSTM networks, it demonstrated exceptional
performance across key evaluation metrics, including
accuracy, precision, recall and F1-score.

1) Model Architecture Effectiveness

CNNs efficiently captured spatial patterns from sensor
data, particularly from the X, Y, Z axis, and spindle motor
measurements. The spatial feature extraction enabled the
model to detect localized patterns associated with tool wear.

LSTM networks are instrumental in capturing temporal
dependencies in the time-series data. Since CNC milling data
exhibits strong temporal correlations, the LSTM layer
effectively analyzed these sequences to predict tool wear
conditions.

Attention mechanism further enhanced the model’s
capability by selectively focusing on the most relevant
features during specific machining operations. This ensured

that the model prioritized critical time steps and sensor
readings that exhibited significant tool wear characteristics.
The proposed hybrid CNN-LSTM with attention model
consistently outperformed other models, achieving the
accuracy 99.85%, precision 99.87%, recall 99.83% and
F1-score 99.85%. These results highlight the robustness and
reliability of the model in accurately classifying worn and
unworn tools, minimizing false positives and false negatives.

2) Practical Implications

The outstanding performance of the proposed hybrid
CNN-LSTM with attention model makes it a strong
candidate for real-time tool wear detection systems in
manufacturing industries. Implementing this model can lead
to:

Improved predictive maintenance.
Reduction in machine downtime.
Enhanced product quality.

Lower operational costs.

V. CONCLUSION

Tool wear detection plays a critical role in manufacturing,
directly impacting productivity, quality, and operational
efficiency. Accurate detection of tool wear helps prevent
equipment failures, reduces downtime, and enhances overall
process reliability. Traditional approaches often rely on
statistical methods or ML algorithms, which may struggle
with the complexity and non-linear patterns in tool wear data.
In this study, attention-based DL models have been explored
for tool wear detection, leveraging their ability to process
intricate patterns and focus on the most relevant features in
the data.

The evaluation of four models—CNN with attention,
LSTM with attention, Hybrid CNN-LSTM with attention,
and Transformer encoder—revealed that attention
mechanisms significantly enhance the performance of deep
learning models by directing focus to critical features.
Among these, the Hybrid CNN-LSTM with attention
achieved the best results, demonstrating the effectiveness of
combining CNN’s spatial feature extraction and LSTM’s
temporal learning capabilities. The superior performance of
this model highlights the importance of synergistic
architectures in tackling complex predictive tasks like tool
wear detection.

While individual CNN and LSTM models performed well,
their slightly lower accuracy emphasized the limitations of
relying solely on spatial or temporal feature learning. The
Transformer encoder, while conceptually powerful,
underperformed due to its sensitivity to hyperparameters and
reliance on large datasets, suggesting it requires further
optimization to match the other models’ performance.

A. Future Work

While this study demonstrates the potential of
attention-based DL models for tool wear detection, several
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areas of future work could further enhance the research:

1.

Real-Time Implementation: Developing real-time tool
wear detection systems with optimized hybrid models
could improve practical applicability in industrial
settings. Efforts can focus on reducing computational
overhead to meet the constraints of real-time processing.
Transformer Optimization: Further investigation into
optimizing Transformer based models, including
pretraining on large-scale datasets or fine-tuning
architectures, may unlock their full potential for tool wear
detection.

Explainability and Interpretability: Enhancing the
interpretability of attention based models can provide
deeper insights into the factors influencing tool wear,
enabling  better  decision-making in  industrial
applications.
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