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Abstract— Tool wear detection is critical in Computer Numeric Control (CNC) milling to maintain machining precision, reduce 

material waste, and extend tool life. Traditional methods, including manual inspection and basic sensor-based approaches, are often 

inefficient and prone to error, underscoring the need for automated, real-time solutions. This study investigates the effectiveness of deep 

learning (DL) models incorporating attention mechanisms for tool wear classification. Four architectures—CNN with attention, LSTM 

with attention, Hybrid CNN-LSTM with attention, and Transformer encoder—are evaluated on a benchmark machining dataset. Among 

the models tested, the Hybrid CNN-LSTM with attention achieves the highest accuracy of 99.85%, effectively capturing both spatial and 

temporal dependencies in the data. The LSTM with attention model follows with 99.69% accuracy, excelling in modeling sequential 

patterns. CNN with attention also performs well with 99.15% accuracy. In contrast, the Transformer encoder achieves comparatively 

lower accuracy at 89.3%, suggesting a need for further optimization for this specific application. The results highlight the strong 

potential of attention-based DL models in enhancing tool wear detection in smart manufacturing environments. Specifically, the Hybrid 

CNN-LSTM with attention model demonstrates suitability for real-time monitoring and predictive maintenance. This research 

contributes to the development of robust, automated systems for tool condition monitoring and lays the groundwork for future 

improvements in intelligent manufacturing technologies. 

 

Keywords: CNC Milling, Deep Learning, Attention Mechanism, Tool Wear Detection. 

 

I. INTRODUCTION 

In modern manufacturing, CNC (Computer Numerical 

Control) milling is a crucial machining process in modern 

manufacturing, producing high-precision components across 

industries such as aerospace, automotive, and medical 

devices [1,2]. Fig. 1 shows a CNC milling machine in 

operation, showcasing the control panel, cutting area, and 

tooling setup used for precision machining in manufacturing 

industries. However, the efficiency of CNC milling is highly 

dependent on the condition of the cutting tools, which 

experience gradual wear due to mechanical stress, high 

temperatures, and friction with workpiece materials [3, 4]. 

Tool wear leads to reduced machining accuracy, increased 

cutting forces, poor surface finish, and even catastrophic tool 

failure if not monitored and managed properly [5]. This has 

driven the need for effective tool wear detection systems that 

enable real-time monitoring and predictive maintenance, 

reducing downtime and improving production efficiency [6–

8]. 

 
Fig. 1: CNC milling machine at DTU 

Traditionally, tool wear detection has relied on direct and 

indirect monitoring techniques [9]. Direct methods, such as 

optical microscopy and scanning electron microscopy 

(SEM), provide highly accurate measurements but require 

machine stop pages, making them impractical for real-time 

applications [10]. Indirect methods utilize sensor data, 

including vibrations, acoustic emissions, cutting forces, and 

spindle power, to infer tool wear conditions [11]. While these 

methods enable real time monitoring, they often require 

complex feature extraction and signal processing techniques 

to ensure accuracy [12]. In recent years, Machine learning 

(ML) and Deep Learning (DL) approaches have 

revolutionized tool wear detection by automating feature 

extraction and improving predictive capabilities [13,14]. 
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Reliable tool wear detection is crucial for improving 

manufacturing efficiency and minimizing downtime. 

Traditional machine learning approaches rely heavily on 

manual feature extraction, which is time-consuming and 

lacks the adaptability to different machining conditions. 

Deep learning (DL) eliminates this limitation by 

automatically learning patterns from raw sensor data, making 

it more effective in handling complex, high-dimensional 

information [15]. 

Unlike ML models that require predefined indicators, DL 

architectures such as CNNs and LSTMs can extract hidden 

patterns from machining data without human intervention. 

Attention mechanisms further enhance DL models by 

dynamically focusing on the most relevant features, 

improving accuracy and robustness [16]. This adaptability 

makes DL a superior choice for real-time tool wear detection 

in CNC milling, where machining conditions frequently vary 

[17]. 

Furthermore, integrating attention-based models aligns 

with the goals of Industry 4.0, enabling smart manufacturing 

with predictive maintenance and real-time decision making. 

By leveraging advanced DL techniques, manufacturers can 

enhance productivity, reduce tool replacement costs, and 

optimize machining performance, making tool wear 

detection more efficient and scalable [18]. 

This paper is structured into six sections. Section 1 

provides an overview of tool wear detection in CNC milling 

and the motivation for using attention-based DL models. 

Section 2 shows the literature review that reviews existing 

approaches, of DL techniques and presents the research gaps. 

Section 3 shows the problem statement and research 

objectives. Section 4 illustrates the technical background that 

covers DL architectures, attention mechanisms, dataset 

preparation, model implementation and evaluation metrices. 

Section 5 presents the experimental setup and comparative 

analysis of the models. Finally, Chapter 6 summarizes key 

findings, contributions to smart manufacturing, and 

directions for future research. 

II. LITERATURE REVIEW 

DL-based approaches for tool wear detection have gained 

significant attention, with various models being explored to 

improve prediction accuracy and monitoring efficiency [19]. 

Table 1: Related work on DL-based tool wear detection 

Reference Model Results (%) Research Focusses Comments 

Kumar et al. 

[20] (2025) 

EfficientNet-B0 

(Pre-trained CNN) 
94.11 

Vision-based tool wear 

monitoring with CNN. 

Self-attention or hybrid 

architectures not explored. 

Xu et al. [21] 

(2025) 

Multi-scale CNN 

BiLSTM-GCN 
98.50 

Hybrid CNN, BiLSTM, 

GCN for spatial-temporal 

features. 

No explicit attention mechanisms. 

He et al. [22] 

(2025) 

Semi-Supervised 

LSTM 
95.78 

Semi-supervised LSTM 

for tool wear detection. 

No attention for global dependency 

learning. 

Karabacak et 

al. [23] 

(2023) 

CNN(GoogleNet, 

AlexNet, ResNet-50, 

EfficientNet-B0) 

99.00 
CNN with spectrograms 

for tool wear detection. 
No sequential feature learning. 

Kamat et al. 

[24] (2022) 

CNN, AE-LSTM, 

k-NN 
93.00 

Compared DL (CNN, 

AE-LSTM) and traditional 

k-NN on sensor data. 

CNN best overall; AE-LSTM 

reduced false positives; k-NN 

struggled with noise. 

Wu et al. 

[25] (2019) 

CNN(ToolWearNet) 

with CAE and 

BP-SGD 

96.20 

Image-based tool wear 

detection using CNN and 

CAE. 

Lacks transformer-based learning. 

Tobon-Mejia 

et al. [26] 

(2012) 

MoG-HMM with 

Dynamic Bayesian 

Networks (DBN) 

89.5 

DBN-based tool wear and 

RUL prediction using 

sensor features. 

Strong RUL prediction; future 

work to address variable conditions 

and maintenance integration. 
 

Table 1 summarizes key research contributions in this 

domain. Kumar et al. [20] implemented a vision-based tool 

wear monitoring system using EfficientNet-B0 with transfer 

learning, achieving 94.11% accuracy, but their study did not 

explore self-attention or hybrid architectures. Xu et al. [21] 

introduced a multi-scale CNN-BiLSTM-GCN model, which 

enhanced spatial-temporal feature extraction and achieved 

98.50% accuracy; however, their approach lacked explicit 

attention mechanisms, such as Transformers, for feature 

refinement. He et al. [22] developed a semi-supervised 

LSTM-based tool wear identification model, leveraging both 

labeled and unlabeled data to improve accuracy (95.78%), 

but it did not incorporate attention-based enhancements for 

global dependency learning. Karabacak et al. [23] utilized 

CNN models (GoogleNet, AlexNet, ResNet-50, 

EfficientNet-B0) for tool wear detection with spectrogram 
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analysis, achieving 99% accuracy; however, the study did not 

focus on sequential feature learning. Kamat et al. [24] 

compared deep learning models (CNN, AE-LSTM) and a 

traditional k-NN classifier on sensor data for tool wear 

classification. The CNN model achieved the highest accuracy 

of 93.0%, with AE-LSTM showing better false positive 

reduction, while k-NN struggled with noisy and 

high-dimensional data. Wu et al. [25] proposed CNN 

(ToolWearNet) with a convolutional autoencoder (CAE) and 

backpropagation-based fine-tuning, achieving 96.20% 

accuracy, but their approach did not explore 

Transformer-based architectures for enhanced learning. 

Similarly, Tobon-Mejia et al. [26] developed a diagnostic and 

prognostic model using MoG-HMM combined with 

Dynamic Bayesian Networks (DBN) to estimate tool wear 

and predict Remaining Useful Life (RUL) based on sensor 

features, achieving an accuracy of 89.5%. Their approach 

showed strong RUL prediction performance but lacked 

adaptability to varying operating conditions and maintenance 

integration. 

A. Research Gaps 

1. Most existing studies rely on CNN, LSTM, or hybrid 

models, but they do not incorporate attention-based 

architectures like Transformers or self-attention 

mechanisms, which can refine feature extraction and 

improve predictive performance. 

2. While CNN-based models effectively capture spatial 

features, they struggle with learning sequential 

dependencies in tool wear progression. Some hybrid 

models, such as those combining CNN and BiLSTM, 

enhance temporal feature extraction, but they lack explicit 

attention-based components to improve global context 

understanding. 

3. Additionally, there has been no comprehensive 

comparison of different attention-based models to 

evaluate their effectiveness in tool wear detection. 

Hence, this study aims to address these limitations by 

conducting a comparative analysis of multiple 

attention-based DL models for tool wear detection. By 

evaluating the performance of Transformer architectures and 

self-attention mechanisms against traditional CNN, LSTM, 

and hybrid approaches, this study seeks to determine the 

optimal model for spatial-temporal feature extraction and 

real-time tool wear monitoring. 

III. RESEARCH METHODOLOGY 

This section outlines the systematic approach followed to 

conduct the research. The study uses an open-source dataset 

to perform tool wear detection using four attention based LD 

models. The methodology comprises several stages, starting 

with data preprocessing, followed by model selection and 

training. The performance of each model is evaluated using 

various key metrics. Finally, a comparative analysis is 

conducted to identify the most effective model. Fig. 2 

illustrates the entire workflow. 

 
Fig 2: Research Methodology Flowchart 

A. Dataset Description 

The dataset originates from the University of Michigan 

SMART Lab and is designed for tool wear detection in CNC 

milling machining experiments. This dataset can be accessed 

at https://www.kaggle.com/datasets/shasun/tool-wear-detecti 

on in-cnc-mill. It was obtained from the Kaggle repository. 

The dataset includes multiple experiments, each focusing on 

different machining conditions such as tool condition, feed 

rate, and clamping pressure. 

1) Tool and Material Specification 

Tool Specification 

Tool type: CNC Milling Cutter. 

Condition: Worn and Unworn Tools (Eight experiments 

with unworn tools and ten with worn tools). 

Purpose: The tool was used to machine an ”S” shape into 

the workpiece, representing smart manufacturing processes. 

Material: The tool material, carbide or high-speed steel 

(HSS) is typically used for CNC milling due to their 

durability, wear resistance, and ability to maintain sharp 

cutting edges under varying conditions. 

Material Specification 

Workpiece material: Wax 

Dimensions: 2” x 2” x 1.5” (approximately 50.8 mm x 50.8 
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mm x 38.1 mm). 

Purpose: Wax blocks were selected as the workpiece 

material to simulate realistic machining operations. They are 

often used in controlled experiments because they are easy to 

machine, minimize tool damage, and clearly show wear 

effects on the cutting tool. 

Inspection method: After the machining process, visual 

inspections were performed to determine whether the 

workpiece passed quality standards, aiding in tool wear 

detection analysis. 

This tool wear dataset serves as a valuable resource for 

predictive modeling in manufacturing diagnostics. The 

dataset comprises multiple CSV files, including 

experiment-wise data (experiment 01.csv to experiment 

18.csv) and a consolidated dataset (main.csv). These files 

contain sensor readings and machining parameters, which are 

crucial for identifying worn and unworn tools. Tables 2 

summarize the key features of the main.csv dataset and the 

machining dataset, respectively, providing an overview of the 

relevant attributes used in the analysis. 

Table 2: Summary of Features in main.csv 

Feature Description 

Experiment 

Number 

Identifier for the specific machining 

experiment. 

Material 
Type of material used in the milling 

process (e.g., wax). 

Feedrate 
Speed at which the tool moves 

during the milling operation. 

Clamp Pressure 
Pressure applied to hold the 

workpiece securely. 

Tool Condition 
Binary label indicating whether the 

tool is worn or unworn. 

Machining 

Finalized 

Indicates if the milling process was 

completed. 

Passed Visual 

Inspection 

Denotes whether the final machined 

product met quality standards. 

B. Data Preprocessing 

Data preprocessing is a crucial step in ML that ensures the 

raw data is cleaned, structured, and transformed for optimal 

model performance [27]. This process involves handling 

missing values, normalizing features, and encoding 

categorical variables to improve data quality and consistency 

[28]. 

Handling Missing Values: The dataset contains missing 

values in the passed visual inspection column. To ensure 

consistency in the dataset, all missing values were filled with 

the categorical value ’no’: 

 (1) 

Feature Engineering: 

1. Experiment Tracking: A new column exp_num was 

created to keep track of different experimental conditions. 

2. Adding Experiment-Specific Settings: Additional 

attributes, including material, feedrate, and clamp_ 

pressure, were incorporated to provide contextual 

information for each machining process. 

3. Merging Experiment Results: Labels such as 

tool_condition, machining_finalized, and 

passed_visual_inspection were integrated into the dataset 

to associate conditions with outcomes. 

DataSplitting: The dataset was split into training and 

testing sets using an 80:20 ratio: 

Dtrain, Dtest = train_test_split(D, test_size = 0.2) (2) 

where D represents the original dataset, and Dtrain and Dtest 

are the resulting training and testing sets, respectively. 

Data Normalization: To ensure numerical features have 

comparable scales, StandardScaler() was applied. Each 

feature X was standardized as follows: 

 
(3) 

where µ is the mean and σ is the standard deviation of the 

feature. 

Categorical Encoding: Categorical variables were 

converted into numerical representations using 

LabelEncoder(), which assigns unique integers to each 

category: 

Xencoded = ꬵ(X) (4) 

where ꬵ is the mapping function that assigns each category 

a distinct numerical value. 

C. Attention Mechanism Based DL Models for Tool 

Wear Detection 

To improve the accuracy of tool wear detection, different 

attention-based DL models are applied and compared. The 

key models used in the study are described below. 

1. CNN with Attention: 

This model uses self-attention to capture long-range 

dependencies in sensor readings. Unlike CNN, which 

captures local spatial dependencies, self-attention assigns 

dynamic importance scores to all input features. 

2. LSTM with Attention: 

This model relies solely on LSTM for temporal modeling 

and applies an attention mechanism to focus on the most 

significant time steps. The attention mechanism computes an 

alignment score for each hidden state in the LSTM output, 

allowing the model to learn which time steps contribute most 

to predicting tool wear. 

3. Hybrid CNN-LSTM with Attention: 

This model integrates CNNs for spatial feature extraction 

with LSTM networks for temporal sequence modeling. CNN 
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captures spatial de pendencies in the sensor data, while 

LSTM captures the time-series relationships. An attention 

mechanism is introduced to dynamically assign different 

importance weights to different time steps in the sequence. 

4. Transformer Encoder: 

This model uses a Transformer encoder, which consists of 

multi-head self attention followed by a position-wise 

feedforward network.  

IV. RESULTS AND DISCUSSIONS 

This section presents a detailed analysis of the 

performance and configuration of attention-based deep 

learning models for tool wear detection. The evaluation 

focuses on four models: CNN with attention, LSTM with 

attention, Hybrid CNN-LSTM with attention, and 

Transformer encoder, comparing their performance metrics 

and hyperparameter configurations. 

A. Attention-Based DL Models Comparison 

Table 3 and Fig. 3 shows the comparison of various 

attention-based DL models applied for the tool wear 

detection. Among the models, the Hybrid CNN-LSTM with 

attention exhibits the best performance, achieving an 

accuracy of 99.85%, precision of 99.87%, recall of 99.83%, 

and an F1-score of 99.85%. These results highlight the 

benefits of combining CNN’s spatial feature extraction 

capabilities with LSTM’s ability to capture temporal 

dependencies, further enhanced by attention mechanisms. 

Table 3: Comparison of attention-based DL models for tool 

wear detection 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN with 

attention 
99.15 99.58 98.80 99.19 

LSTM with 

attention 
99.69 99.72 99.65 99.68 

Hybrid 

CNN-LSTM 

with attention 

99.85 99.87 99.83 99.85 

Transformer 

encoder 
89.3 89.82 89.86 89.84 

The LSTM with attention model also performs well, with 

an accuracy of 99.69%, precision of 99.72%, recall of 

99.65%, and an F1-score of 99.68%. This model leverages 

LSTM’s strengths in handling sequential data, complemented 

by attention mechanisms to focus on the most relevant time 

steps. However, it slightly underperforms compared to the 

hybrid model. 

 
Fig. 3: Comparison of different models for tool wear 

detection 

The CNN with attention model achieves an accuracy of 

99.15%, precision of 99.58%, recall of 98.80%, and an 

F1-score of 99.19%. While the model effectively extracts 

features from the input data, its lower recall suggests 

occasional difficulty in identifying all relevant instances, 

possibly due to limitations in capturing temporal 

relationships. 

In contrast, the Transformer encoder exhibits a 

significantly lower performance, with an accuracy of 89.3%, 

precision of 89.82%, recall of 89.86%, and an F1-score of 

89.84%. This underperformance may stem from the model’s 

dependency on large datasets for effective training and a 

higher sensitivity to hyperparameter tuning. 

B. Hyperparameter Configurations 

Table 4 details the hyperparameters used for each model, 

which significantly influence their performance. The CNN 

with attention employs Conv1D layers with 64 and 128 

filters, a kernel size of 3, ReLU activation, and a dropout rate 

of 0.2. These settings enable efficient feature extraction and 

regularization. The LSTM with attention is configured with 

Table 4: Hyperparameters for various attention-based DL 

models 

Model Hyperparameters 

CNN with 

attention 

Conv1D filters: 64, 128 Kernel size: 

3 Activation: ReLU Dropout: 0.2 

LSTM with 

attention 

LSTM units: 64 Return sequences: 

True Dropout: 0.2 

Hybrid 

CNN-LSTM 

with attention 

Conv1D filters: 64, 128 LSTM 

units: 64 Multi-Head Attention 

heads: 4 Key dimension: 32 

Dropout: 0.2 

Transformer 

encoder 

Dense layer units: 128, 64 

Multi-Head Attention heads: 4 Key 

dimension: 32 Dropout: 0.2 
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64 LSTM units, return sequences enabled, and a dropout 

rate of 0.2. This setup ensures the model retains sequence 

information while mitigating overfitting. 

The Hybrid CNN-LSTM with attention combines the 

strengths of both architectures. It uses Conv1D layers (64 and 

128 filters), 64 LSTM units, and multi-head attention with 4 

heads, a key dimension of 32, and a dropout rate of 0.2. This 

integration optimizes both spatial and temporal feature 

learning while focusing on the most critical features through 

attention mechanisms. 

The Transformer encoder is designed with dense layers of 

128 and 64 units, multi head attention with 4 heads, a key 

dimension of 32, and a dropout rate of 0.2. Despite its 

sophisticated architecture, the model’s dependency on a large 

dataset and intricate hyperparameter optimization affects its 

effectiveness in this task. 

C. Insights and Observations 

The results indicate that the Hybrid CNN-LSTM with 

attention is the most effective model for tool wear detection, 

consistently outperforming other models across all metrics. 

While the Transformer encoder shows potential, its 

performance suggests that it may require further optimization 

or larger datasets to fully leverage its capabilities. It is notable 

that both the CNN with attention and LSTM with attention 

models achieve slightly lower accuracy than the hybrid 

CNN-LSTM model. Although these differences may appear 

numerically small, in tasks where high accuracy is crucial 

(such as tool wear detection), even a fraction of a percent can 

signify a meaningful improvement. However, the results 

indicate that the individual models are still highly accurate 

and perform well, but not at the level of the hybrid model. 

D. Performance of Proposed Model- Hybrid CNN 

LSTM with Attention 

The proposed hybrid CNN-LSTM with attention model 

emerged as the most effective for detecting tool wear in CNC 

milling operations. By combining the strengths of both CNNs 

and LSTM networks, it demonstrated exceptional 

performance across key evaluation metrics, including 

accuracy, precision, recall and F1-score. 

1) Model Architecture Effectiveness 

CNNs efficiently captured spatial patterns from sensor 

data, particularly from the X, Y, Z axis, and spindle motor 

measurements. The spatial feature extraction enabled the 

model to detect localized patterns associated with tool wear. 

LSTM networks are instrumental in capturing temporal 

dependencies in the time-series data. Since CNC milling data 

exhibits strong temporal correlations, the LSTM layer 

effectively analyzed these sequences to predict tool wear 

conditions.  

Attention mechanism further enhanced the model’s 

capability by selectively focusing on the most relevant 

features during specific machining operations. This ensured 

that the model prioritized critical time steps and sensor 

readings that exhibited significant tool wear characteristics. 

The proposed hybrid CNN-LSTM with attention model 

consistently outperformed other models, achieving the 

accuracy 99.85%, precision 99.87%, recall 99.83% and 

F1-score 99.85%. These results highlight the robustness and 

reliability of the model in accurately classifying worn and 

unworn tools, minimizing false positives and false negatives. 

2) Practical Implications 

The outstanding performance of the proposed hybrid 

CNN-LSTM with attention model makes it a strong 

candidate for real-time tool wear detection systems in 

manufacturing industries. Implementing this model can lead 

to: 

• Improved predictive maintenance. 

• Reduction in machine downtime. 

• Enhanced product quality. 

• Lower operational costs. 

V. CONCLUSION 

Tool wear detection plays a critical role in manufacturing, 

directly impacting productivity, quality, and operational 

efficiency. Accurate detection of tool wear helps prevent 

equipment failures, reduces downtime, and enhances overall 

process reliability. Traditional approaches often rely on 

statistical methods or ML algorithms, which may struggle 

with the complexity and non-linear patterns in tool wear data. 

In this study, attention-based DL models have been explored 

for tool wear detection, leveraging their ability to process 

intricate patterns and focus on the most relevant features in 

the data. 

The evaluation of four models—CNN with attention, 

LSTM with attention, Hybrid CNN-LSTM with attention, 

and Transformer encoder—revealed that attention 

mechanisms significantly enhance the performance of deep 

learning models by directing focus to critical features. 

Among these, the Hybrid CNN-LSTM with attention 

achieved the best results, demonstrating the effectiveness of 

combining CNN’s spatial feature extraction and LSTM’s 

temporal learning capabilities. The superior performance of 

this model highlights the importance of synergistic 

architectures in tackling complex predictive tasks like tool 

wear detection. 

While individual CNN and LSTM models performed well, 

their slightly lower accuracy emphasized the limitations of 

relying solely on spatial or temporal feature learning. The 

Transformer encoder, while conceptually powerful, 

underperformed due to its sensitivity to hyperparameters and 

reliance on large datasets, suggesting it requires further 

optimization to match the other models’ performance. 

A. Future Work 

While this study demonstrates the potential of 

attention-based DL models for tool wear detection, several 
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areas of future work could further enhance the research: 

1. Real-Time Implementation: Developing real-time tool 

wear detection systems with optimized hybrid models 

could improve practical applicability in industrial 

settings. Efforts can focus on reducing computational 

overhead to meet the constraints of real-time processing. 

2. Transformer Optimization: Further investigation into 

optimizing Transformer based models, including 

pretraining on large-scale datasets or fine-tuning 

architectures, may unlock their full potential for tool wear 

detection. 

3. Explainability and Interpretability: Enhancing the 

interpretability of attention based models can provide 

deeper insights into the factors influencing tool wear, 

enabling better decision-making in industrial 

applications. 
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